Finite particle method based on nonlinear beam theory
Received:July 03, 2018  Revised:September 26, 2018
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20180703001
KeyWord:finite particle method  vector mechanics  nonlinear beam theory  spatial beam structures  geometric nonlinear  static analysis
                 
AuthorInstitution
黄正 广东电网有限责任公司电力科学研究院, 广州
刘石 广东电网有限责任公司电力科学研究院, 广州 ;广东电科院能源技术有限责任公司, 广州
杨毅 广东电网有限责任公司电力科学研究院, 广州 ;广东电科院能源技术有限责任公司, 广州
高庆水 广东电网有限责任公司电力科学研究院, 广州 ;广东电科院能源技术有限责任公司, 广州
张楚 广东电网有限责任公司电力科学研究院, 广州 ;广东电科院能源技术有限责任公司, 广州
田丰 广东电网有限责任公司电力科学研究院, 广州 ;广东电科院能源技术有限责任公司, 广州
Hits: 66
Download times: 71
Abstract:
      The finite particle method (FPM) is based on vector mechanics.In this method,a finite number of particles calculated by Newton's law of motion are used to simulate the deformation behavior of structures.In FPM,the particles are connected by the components,which restrict the motion of the particles,and the internal force of the component is described by the motion variables of the particles.Based on the basic idea of vector mechanics and nonlinear beam theory,a novel FPM is proposed in this paper.In this method,the nonlinear deformation of the beam is described in the co-rotational element coordinate system.Taking the spatial beam structures as an example,the nonlinear formulas of calculating the internal force of the component are derived,and the bending and twist coupling deformation is considered.The rotation matrix of co-rotational element coordinate system is obtained by the transformation formula of two successive Euler angles.Compared with the traditional FPM,the proposed method avoids the analysis of rigid body virtual rotation.Numerical solutions are presented for four structures,which indicate that the presented FPM algorithm is highly accurate in predicting large deformation responses of structures.