欢迎光临《计算力学学报》官方网站!
基于非线性梁理论的有限质点法
FINITE PARTICLE METHOD BASED ON NONLINEAR BEAM THEORY
投稿时间:2018-07-03  修订日期:2018-09-26
DOI:
中文关键词:  有限质点法  向量力学  非线性梁理论  空间梁系结构  几何非线性  静力分析
英文关键词:Finite particle method  vector mechanics  nonlinear beam theory  spatial beam structures  geometric nonlinear  static analysis
基金项目:南方电网科技项目
作者单位E-mail
黄正 广东电网有限责任公司电力科学研究院 zhhuang8831@163.com 
刘石 广东电网有限责任公司电力科学研究院广东电科院能源技术有限责任公司 13925041516@139.com 
杨毅 广东电网有限责任公司电力科学研究院广东电科院能源技术有限责任公司  
高庆水 广东电网有限责任公司电力科学研究院广东电科院能源技术有限责任公司  
张楚 广东电网有限责任公司电力科学研究院广东电科院能源技术有限责任公司  
田丰 广东电网有限责任公司电力科学研究院广东电科院能源技术有限责任公司  
摘要点击次数: 112
全文下载次数: 
中文摘要:
      有限质点法是以向量式力学为基础,有限数量的质点用来模拟结构的变形行为,质点的运动由牛顿运动定律来计算。在有限质点法中,质点通过构件相连,构件约束着质点的运动,并且其内力由质点的运动变量来描述。基于向量式力学的基本思想和非线性梁理论,本文提出了一种新的有限质点法,该方法在共旋单元坐标系中描述梁的非线性变形。以空间梁系结构为例,推导了计算构件内力的非线性公式,并考虑了弯扭耦合变形。通过两个连续欧拉角的变换公式得到共旋坐标系的旋转矩阵。与传统的有限质点法相比,本文提出的方法避免了刚体虚转动分析。通过四个结构的数值求解,验证了本文方法在计算结构大变形响应时具有较高的精度。
英文摘要:
      The finite particle method (FPM) is based on vector mechanics. In this method, a finite number of particles calculated by Newton's law of motion are used to simulate the deformation behavior of the structure. In FPM, the particles are connected by the components, which restrict the motion of the particles, and the internal force of the component is described by the motion variables of the particles. Based on the basic idea of vector mechanics and nonlinear beam theory, a novel FPM is proposed in this paper. In this method, the nonlinear deformation of the beam is described in the co-rotational element coordinate system. Taking the spatial beam structures as an example, the nonlinear formulas of calculating the internal force of the component are derived, and the bending and twist coupling deformation is considered. The rotation matrix of co-rotational element coordinate system is obtained by the transformation formula of two successive Euler angles. Compared with the traditional FPM, the proposed method avoids the analysis of rigid body virtual rotation. Numerical solutions are presented for four structures, which indicate that the present FPM algorithm is highly accurate in predicting large deformation responses of structures.
  查看/发表评论  下载PDF阅读器
您是第4390905位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计