欢迎光临《计算力学学报》官方网站!
一种提高极值点处收敛精度的三阶WENO-Z格式
An third-order WENO-Z scheme for improving the convergence order near the critical points
投稿时间:2018-01-01  修订日期:2018-04-27
DOI:
中文关键词:  三阶WENO格式  光滑因子  高精度  高分辨率  双曲守恒律
英文关键词:third-order WENO scheme  smoothness indicators  high precision  high resolution  hyperbolic conservation law
基金项目:装备预研教育部联合基金(青年人才)(6141A020331);国家自然科学基金项目(51409202);中央高校基本科研业务费资助(2016-YB-016)
作者单位E-mail
徐维铮 武汉理工大学 xuweizheng@whut.edu.cn 
摘要点击次数: 57
全文下载次数: 
中文摘要:
      为了提高三阶WENO-Z格式在极值点处的计算精度,首先通过理论推导给出三阶WENO格式满足收敛精度的充分条件。采用泰勒级数展开的方式,推导给出所构造格式非线性权重的计算公式,并综合权衡计算精度和计算稳定性确定所构造格式的参数。通过两个典型的精度测试验证了改进格式在光滑流场极值点区域逼近三阶精度。进一步选用激波与熵波相互作用、Richtmyer-Meshkov不稳定性等经典算例证实了本文提出的改进格式WENO-PZ3相较其他格式(WENO-JS3,WENO-Z3),不仅具有较高的精度,而且降低了格式的耗散低,提高了对流场结构的分辨率。
英文摘要:
      In order to improve the convergence order of the conventional third-order WENO-Z scheme at the critical points, the sufficient conditions for satisfying the convergence order of the third-order WENO scheme are firstly derived. The expressions of the non-linear weights are derived with the way of Taylor series expansion. And, then the parameters of the constructed scheme are finally determined considering the balance between the convergence precision and the computational stability. The accuracy tests prove that the proposed scheme almost converges to third-order in smooth flow field near the critical points. Shock-entropy wave test, Richtmyer-Meshkov instability and some other classic examples are computed to verify that the improved scheme WENO-PZ3 can give more accuracy and high resolution results of the complex flow field structures compared with other WENO schemes like the WENO-JS3, and WENO-Z3.
  查看/发表评论  下载PDF阅读器
您是第4065411位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计