欢迎光临《计算力学学报》官方网站!
周枫林,谢贵重,张见明,李落星.一种新型三角形裂尖单元及其在结构裂纹分析中的应用[J].计算力学学报,2019,36(5):656~663
一种新型三角形裂尖单元及其在结构裂纹分析中的应用
A new triangular element for crack front and the application in analysis of crack problems
投稿时间:2018-08-21  修订日期:2018-11-14
DOI:10.7511/jslx20180821001
中文关键词:  裂纹尖端单元  裂纹问题  对偶边界元法  边界积分方程  形函数
英文关键词:crack front element  crack problems  dual boundary element method  boundary integral equation  shape function
基金项目:国家自然科学基金(11602082);中国博士后基金(2016M602403)资助项目.
作者单位E-mail
周枫林 湖南大学 机械与运载工程学院, 长沙 410082
湖南工业大学 机械工程学院, 株洲 412007 
 
谢贵重 湖南大学 机械与运载工程学院, 长沙 410082  
张见明 湖南大学 机械与运载工程学院, 长沙 410082 zhangjm@hnu.edu.cn 
李落星 湖南大学 机械与运载工程学院, 长沙 410082  
摘要点击次数: 66
全文下载次数: 73
中文摘要:
      构造了一种适合边界元分析裂纹问题的三角形单元,该单元中的形函数包含两部分,主要部分用于捕捉裂纹尖端上位移分布的陡峭特性(性质),另一部分为常规的拟合函数,体现裂纹尖端位置附近的物理量在其他方向上的连续分布。形函数主要部分的构造充分利用了已有理论研究获得的结论,在裂纹表面,随着距离远离尖端,位移分布与√r函数保持同阶变化。在传统形函数的基础上,通过先乘以一项同阶于√r的变量项,再在系数中将其在形函数所在点上的值除去,便得到新型的用于拟合裂纹尖端附近位移和面力分布的形函数。新的形函数能够满足形函数的delta性质,但归一性不再满足,因此,新的形函数只用于物理量的拟合,而几何量的拟合依然采用传统方案。通过对偶边界元方法计算裂纹尖端的张开位移后,利用一种位移外插方法计算获得应力强度因子。数值算例关注了一种无限域内的圆盘裂纹,应用新构造的三角形单元于对偶边界元中计算结构在受到斜拉力时裂纹尖端的三种应力强度因子。通过与参考解进行对比,验证了该插值方案用于对偶边界元分析裂纹问题时的正确性和高精度。
英文摘要:
      A new type of triangular element one edge of which lies on the crack front is developed for boundary element analysis of crack problems.The shape functions in this type of elements consist of two parts.The major part of the shape functions is constructed to approximate the sharp variation of the physical quantities including displacements and stresses near the crack front in the crack surfaces.The other part is the traditional type of shape functions that are defined for triangular elements.In the major part of the shape functions,an expression similar to √r is involved since it has been theoretically proved that the distribution of the displacement around the crack front is of the same order as that of √r. In the newly defined shape functions,a specially constructed term,which is of the same order as that of √r, is multiplied by the traditional shape functions.In order to guarantee the delta property of the shape functions,however,the values of the specially constructed term at the interpolation points should be divided by the corresponding coefficients of the shape function.The proposed elements should only be applied for approximation of physical quantities near the crack front.The geometric quantities in the same area should be approximated by a traditional method.In the application of this elements in the dual boundary element method for crack problems,the crack of displacements (CODs) in the crack surfaces is first computed.Then an extrapolation method is applied to compute the stress intensity factors at the crack front.As the demonstration example,a circle shaped crack in an infinite domain is considered.Three types of SIFs at the crack front are computed by the dual boundary element method with the new element.Comparisons with the analytical results have been made to demonstrate the validity and accuracy of the element.
查看全文  查看/发表评论  下载PDF阅读器
您是第6056547位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计