欢迎光临《计算力学学报》官方网站!
李少锋,都琳,邓子辰.Hamilton体系下介电弹性体圆形薄膜的动力学建模与辛求解
Dynamic modeling and symplectic solution of a circular membrane of dielectric elastomer under Hamilton system[J].计算力学学报,2019,36(3):304~309
Hamilton体系下介电弹性体圆形薄膜的动力学建模与辛求解
Dynamic modeling and symplectic solution of a circular membrane of dielectric elastomer under Hamilton system
Dynamic modeling and symplectic solution of a circular membrane of dielectric elastomer under Hamilton system
投稿时间:2018-04-09  修订日期:2018-05-19
DOI:10.7511/jslx20180409001
中文关键词:  介电弹性体  辛Runge-Kutta  保能量  长时间稳定性
英文关键词:dielectric elastomer  symplectic Runge-Kutta algorithm  energy conservation  numerical stability
基金项目:国家自然科学基金(91648101;11672233);中央高校基本科研业务费(3102017AX008);钱学森空间技术实验室种子基金(QXS-ZZJJ-02)资助项目.
作者单位E-mail
李少锋 西北工业大学 理学院, 西安 710072
复杂系统动力学与控制工信部重点实验室, 西安 710072 
 
都琳 西北工业大学 理学院, 西安 710072
复杂系统动力学与控制工信部重点实验室, 西安 710072 
lindu@nwpu.edu.cn 
邓子辰 西北工业大学 工程力学系, 西安 710072
复杂系统动力学与控制工信部重点实验室, 西安 710072 
 
摘要点击次数: 636
全文下载次数: 184
中文摘要:
      采用辛算法研究了Hamilton体系下介电弹性体圆形薄膜的动力学响应。首先,将该问题引入Hamilton对偶变量体系,借助Legendre变换,给出系统的广义动量和Hamilton函数,通过对Hamilton函数作用量的变分,得到Hamilton体系下的正则方程。其次,对于得到的正则方程给出了辛Runge-Kutta的计算格式。最后,采用二级四阶辛Runge-Kutta算法对动力学系统进行了数值求解,和四级四阶经典Runge-Kutta算法进行对比,结果表明,二级四阶辛Runge-Kutta算法具有保能量以及长时间数值稳定的优势,同时说明四级四阶经典Runge-Kutta算法对于步长依赖的局限性。
英文摘要:
      The symplectic algorithm is used to study the dynamic response of the circular membrane of dielectric elastomer in a Hamiltonian system.Firstly,this model is introduced into the dual Hamiltonian variable system,and the generalized momentum and Hamilton functions of the system are obtained by means of Legendre transformation.The canonical equation is obtained by using the variational principle to the Hamilton function.Secondly,for the obtained canonical equations,the calculation scheme of the symplectic Runge-Kutta algorithm is given.Finally,the two-stage and fourth-order symplectic Runge-Kutta algorithm is adopted for the numerical solution.Numerical simulation results show that the two-stage and fourth-order symplectic Runge-Kutta algorithm has an advantage of preserving energy and long-time numerical stability by comparing with the four-stage and fourth-order classic Runge-Kutta algorithm.In addition,this example also illustrates the limitations of step dependence of the four-stage and fourth-order classical Runge-Kutta algorithm.
查看全文  查看/发表评论  下载PDF阅读器
您是第6032978位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计